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What do we already know?
In our previous report, we estimated that the effective reproductive number in King
County as of April 4 remained near one (with a 95% confidence interval from 0.55 to 1.33
and a best estimate of 0.94). This result implied that daily case counts would likely decline
slowly and potentially persist at an approximate plateau if societal behavior remained
unchanged, putting King County in a situation where relaxation of physical distancing
could quickly lead to increased transmission.

What does this report add?
In this report, we update our results for King County with case data from the Washington
Disease Reporting System through April 20. We now estimate that the effective repro-
ductive number has been below 1 from March 29 through April 15, with the estimate
for April 15 between 0.28 and 1.0 and best estimate 0.64. In addition, we include new
results showing model fit to deaths over time and inferences about the prevalence of active
infections and cumulative incidence through April 20. By sampling over the widest range
of plausible estimates from recent literature for the all-ages infection-fatality ratio to
estimate the absolute number of infections in King County since the start of the epidemic,
we infer that the prevalence of active COVID-19 infections in King County on April 20
is between 0.1% and 0.68% of the total population, with best estimate 0.29%, and the
prevalence time course is consistent with preliminary estimates from the greater Seattle
Coronavirus Assessment Network (SCAN). Since January 15, we estimate that cumulative
incidence through April 20 was between 0.68% and 4.8%, with best estimate 2.1%.

What are the implications for public health practice?
Our collective efforts to limit physical interaction across society have substantially slowed
transmission, but the situation remains sensitive to changes in mitigation and containment
policy since the vast majority of the population in King County remains susceptible to
COVID-19. Some increased low-risk activity may be compatible with maintaining the
effective reproductive number below 1, but continued adherence to physical distancing
policies remains necessary to further reduce transmission and bring daily cases to levels
where contact tracing and other preventative measures will be most effective.

1 Executive summary
Following the confirmation in late February that COVID-19 was transmitting locally in the Seattle metro
area, a suite of physical distancing policies and behavioral recommendations were implemented throughout
the month of March. Widespread adherence prevented much of the possible burden of COVID-19, and
daily case counts and now deaths have recently been declining in King County. Washington State will
soon be permitting some activities previously prohibited, and the consequences of recent changes to policy
are not yet known.

Here, we update our estimates of the COVID-19 transmission rate over time in King County, as
measured with the effective reproduction number, using updated case and death data from the Wash-
ington Disease Reporting System (WDRS) through April 20. We now estimate that the effective
reproductive number (Re) has likely been consistently below one since March 29, and was
between 0.28 and 1.0, with best estimate 0.64, on April 15. This new estimate is overlapping
with the uncertainty interval in our previous report but has increased precision supported by more data.
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New to this report are estimates of the prevalence of active infections and cumulative incidence
over time. These estimates incorporate the data on deaths over time and estimates from the scientific
literature for the fraction of all infections that die from COVID-19 to estimate the total number of
infections in King County, and thus the fractional prevalence. There remains a lot of uncertainty in
the infection-fatality-ratio (IFR) that measures the fraction of people infected with COVID-19 who
will go on to die, with reasonable estimates ranging from roughly 0.2% to 2.4%. Propagating this
uncertainty through the model, we estimate that the current prevalence of active infections in King
County on April 20 was between 0.10% and 0.68% of the total population, with best estimate 0.29%.
Furthermore, the prevalence time course is consistent with preliminary estimates from the greater Seattle
Coronavirus Assessment Network (SCAN). Starting from a likely importation to the region on January 15,
we estimate that the cumulative incidence through April 20 was between 0.68% and 4.8%,
with best estimate 2.1%. Despite the large uncertainty, we conclude that the vast majority of
King County residents are still fully susceptible to COVID-19 infection. Thus, continued
physical distancing remains essential to further reduce daily prevalence while testing ramps
up and more information-rich data and targeted interventions become available.

Also included in this report is an expanded technical appendix describing the model in more detail.
Accompanying code to generate the figures in this report will be available shortly and linked here in an
addendum. (May 22 update: Here’s the repository.)

2 Key inputs, assumptions, and limitations
Our modeling approach relies heavily on particular data sources and assumptions, which in turn lead to a
number of important limitations. Specifically:

• We continue to use lab testing data provided by Washington State Department of Health (WADoH)
through the Washington Disease Reporting System (WDRS), compiled for this report on April 26.
Tests are aggregated by specimen collection date, and to hedge against incomplete reporting in the
WDRS, we only include data through April 20 in the analysis.

• In this analysis, we also use daily COVID-19 deaths reported to the WDRS over the same time
period. These are incorporated into the model by assuming that the infection fatality ratio (IFR)
ranges broadly from 0.2% to 2.5% based on published values. Similarly, based on previous studies
of early data from China, we also assume that the time between infection and death is log-normally
distributed (log mean 2.8, log standard deviation 0.42), with an average value of roughly 19 days.

• We assume that a number of COVID-19 importations into King County went undetected by the
health system. With the data we have, we cannot estimate how many importations occurred at
particular times, so instead we allow the model to have as many imported infections as necessary
on January 15 to achieve consistency with observed mortality in King County. While we find that
this approach yields transmission dynamics consistent with all the data we have and that model
outputs are insensitive to reasonable changes in importation timing, we emphasize that the modeled
importations are not reflective of reality. This is a key limitation of our approach that introduces
difficult-to-quantify uncertainty.

• In the past, we based Re estimates on reported COVID-19 positives. Now, to better account
for ramp up and subsequent variation in testing, we construct an epidemiological curve by spline
smoothing total tests with a 3-day correlation time, which accounts for weekend drops in testing,
and multiplying by the observed fraction of tests that were positive (see Figure 5 in the appendix).
This better separates changes in Re from changes in testing volume. We further assume that this
approximate epidemiological curve is directly proportional to the number of infectious individuals
in the population, with an unknown proportionality constant.

• As before, the case reporting rate (i.e. the daily probability that an infection in King County is
reported to the WDRS) is assumed to change over time, with one rate prior to March 10 and a
different one thereafter. On top of this, we now explicitly correct for testing decreases over weekends.
This has small impacts on results reported to date but more properly accounts for day-to-day
variation in testing.
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3 Modeling approach
We fit a COVID-specific transmission model to daily testing data and mortality. The key modeling
assumption is that individuals can be grouped into one of four disease states: susceptible, exposed (latent)
but non-infectious, infectious, and recovered. In addition, we assume:

• COVID-19 has a latent period that lasts about 4 days during which infected people are not yet
capable of transmission. The choice of a 4 day latent period implicitly assumes that people become
infectious on average roughly 1 day before the typical 5-day asymptomatic incubation period ends.

• After the latent period, those exposed to COVID-19 are infectious for about 8 days.

• In the model, COVID-19 transmission begins on January 15 with an unknown number of infec-
tious individuals introduced into the population. On all other days, we assume that community
transmission is the dominant infection route.

We use a multi-step approach, described in detail in the appendix, to fit the model to WDRS data.
Briefly, we construct an approximate epidemiological curve from the observed fraction of tests that were
positive and the total number of tests (smoothed to account for day-to-day variation in testing volume),
and we calculate daily estimates of Re by applying the method used in our previous report to this curve.
This yields estimates of Re from February 28 to April 15. We fill the time from January 15 onward
by backward and forward filling. Backward-filling is done with the average value from February 28 to
March 2, to approximate unabated COVID-19 transmission in the absence of physical distancing, and
forward-filling is done with the estimate on April 15.

Given Re over time, we calculate the expected number of COVID-19 deaths in the model by assuming
an average IFR of 1% and an average time to death of 19 days, and we minimize the difference between
observed mortality and the model average as a function of the number of importations on January 15.
Finally, daily estimates of the reporting rate, pt, are constructed by comparing daily positive COVID-19
tests in the WDRS to the number of infections in the model. These daily estimates are then used
to approximate the reporting rate before and after March 10, controlling for weekends, in a standard
weighted least squares regression.

This procedure fully specifies the model’s parameters. To estimate the prevalence and cumulative
incidence over time consistent with observed testing and mortality data, we sample the fitted model
10,000 times.

4 Updated estimates of the effective reproductive number
Figure 1 shows our current estimates of the effective reproductive number (black dots, 2 standard deviation
error bars) in King County. We estimate that on April 15 Re was between 0.28 and 1 with best estimate
0.64. Moreover, we estimate that Re was definitively below 1 from March 29 to April 15.

Comparison between our current estimates and previous results (grey dots, 2 standard deviation error
bars) highlights the role of uncertainty in estimating Re. While point estimates have remained largely
consistent up to late March, recent progression of the epidemic in King County gives us more certainty
about transmission through early April, leading to estimates confidently below Re = 1. While these
estimates are consistent with the uncertainty in our previous results, including our mobility-data-based
now-casts (yellow), they offer much more definitive insight into the epidemiological situation in King
County. Moreover, as our methods have developed to better account for variation in testing volume (see
Figure 5 in the appendix), uncertainty in our most recent estimates is slightly lower throughout time
period analyzed.

In past reports, we constructed a relationship between Re and mobility data to estimate Re in the
days masked by WDRS reporting lags and COVID’s latent infectious period. However, as we described in
our last report, our preferred mobility covariate is no longer consistent with the epidemiological data, and
we’re still working to resolve this issue. As a result, in this report, we assume Re is constant from April
15 forward unless otherwise specified. Meanwhile, from January 15 to February 27, before the analysis
period, we assume Re ≈ 3.02 based on the average estimated value from February 28 to March 2, before
widespread physical distancing.
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Figure 1: Updated effective reproductive number estimates. Black dots (2 standard deviation error bars)
are daily Re estimates based on testing data from the WDRS, showing declining COVID-19 transmission
in King County from March 29 to April 15. Grey dots are similar estimates from previous reports for
comparison. In our April 10 report, a now-cast based on mobility data (95% CI in yellow) captured
behavior from March 26 to April 7 but with significantly higher uncertainty. (Note also that the declining
point estimate for April 11 to April 15 may reflect remaining incomplete data.)

5 Incorporating mortality data gives us information about the
COVID-19 reporting system in King County

New in this report, we use daily COVID-19 mortality reported to the WDRS to better characterize the
epidemiological situation in King County today. Specifically, in the context of the model, we assume
COVID-19 transmission began with an unknown number of importations on January 15, and we estimate
the number of importations by minimizing the difference between the average mortality in the model and
observed mortality. This restriction to January 15 is made out of necessity: With just recent testing and
mortality data, we cannot infer the actual number of importations and their dates since early importations
with subsequent community transmission are indistinguishable from a larger number of later importations.

Using our point estimate of 3.02 for the reproduction number averaged from February 28 to March
2, prior to any physical distancing, an all-age-average IFR of 1%, and an assumed average time from
infection to death of 19 days, our model requires roughly 39 importations on January 15 to be consistent
with observed mortality. We do not think that this is a realistic estimate, and the high initial value
reflects a few sources of variation that we are not currently modeling. These include the possibility
that the reproduction number was slightly higher than our point estimate (but consistent with the
uncertainty shown in Figure 1), that an unobserved super-spreading event occurred early on, or that
there was more than one importation with genetically-indistinguishable viruses in January. Regardless of
these uncertainties in the initial condition, our model is consistent with current data, suggesting that a
substantial number of early cases in King County went undetected by the health system. Over time, with
data from additional sources, we may be able to more realistically estimate the number and timing of
COVID-19 introductions into King County. In this report, we find that this coarse approach yields a
model capable of characterizing the epidemiological situation today.

This is shown in Figure 2. In the top panel, mortality from the fitted model (peach, 50%, 95%, and
99% CI shading) is sampled assuming the IFR is gamma distributed (shape 4, scale 0.25), based on a
metastudy of published values and time-to-death is log-normally distributed (log mean 2.8, log standard
deviation 0.42), based on early data from China. This captures the observed rise and fall in daily deaths
reported to the WDRS (black dots). In the middle panel, infections in the model are compared to daily
COVID-19 positives to estimate the daily probability of catching an infectious individual (black dots). A
step-wise regression model corrected for relaxed weekend testing aggregates these estimates (yellow) and
tells us that a recently infected individual has a roughly 2.2% chance of being tested positive on a given
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Figure 2: Fitting the transmission model to testing and mortality data from the WDRS. Top panel:
Modeled mortality (peach, 50% CI dark, 95% CI light, 99% CI lightest) captures the trend in observed
COVID-19 mortality (black dots) based on Re estimates and a free number of importations on January
15. Middle panel: Comparing observed COVID-19 positives to modeled infections gives noisy, daily
estimates of the probability infections are detected by the health system (black dots, 2 standard deviation
error bars). We use a regression model (yellow, mean and 95% CI) to aggregate estimates over time and
account for decreased testing over the weekend. Bottom panel: With the specified reporting rate, the
model (green, intervals as in the top panel) can be compared to observed cases (black dots).
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Figure 3: Using the fitted model to estimate prevalence and cumulative incidence. Top panel: Model-
based prevalence (purple, 50% CI dark, 95% CI light, 99% CI lightest) compared to survey-based estimates
from SCAN (mean in black, 95% CI in grey). Bottom panel: Cumulative incidence (blue, intervals
as in the top panel) indicates that the vast majority of King County’s population is still susceptible
to COVID-19. In the inset, comparing total test positives by April 20 to cumulative incidence implies
roughly 15.4% (5.1% to 36.5% 95% CI) of infections are eventually tested positive and reported to the
WDRS.

day of their infection (corresponding to 15.4% over the course of their infection, as discussed in the next
section). Finally, in the bottom panel, we compare cases in the model (green) to observed cases in the
WDRS, demonstrating that the model captures dynamics from late February to today conditional on the
importations in January (red circle).

6 Using the model to estimate active and cumulative infections
in King County

The fitted model can be used to estimate daily prevalence (the percent of the population actively infected
with COVID-19) and cumulative incidence (the percent of the population no longer susceptible to
COVID-19). This is shown in Figure 3.

In the top panel, model estimates (purple) show peak prevalence in late March, and we subsequently
estimate that between 0.10% and 0.68%, with a best estimate of 0.29%, of the population was actively
infected on April 20. These estimates can be compared to published results from SCAN (mean in
black, 95% CI in grey), where prevalence is measured through a self-selecting survey, showing reasonable
agreement and an independent check of the model estimates from March 23 through April 9.

In the bottom panel, the corresponding cumulative incidence is shown over time. On April 20, we
estimate that between 0.68% and 4.8%, with a best estimate of 2.1%, of King County’s population was
no longer susceptible to COVID-19. This implies that the vast majority, at least 95% of the population,
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Figure 4: Model-based projections of daily COVID-19 positives under 3 scenarios, shown in the inset.
Gradual increase in effective reproductive number to mid-March levels (grey), to late-March levels (red),
and maintenance of current levels (green) lead to dramatic changes in projections of COVID-19 cases in
King County (50% confidence intervals for each scenario). At current levels of susceptibility, exponential
growth of COVID-19 infections is still possible in King County.

remain susceptible, putting King County far from any protection through herd immunity.
Comparing the cumulative incidence to the total number of positive COVID-19 cases in the WDRS as

of April 20 allows us to infer what percentage of infections eventually get tested positive. This is shown
in Figure 3’s inset, where we find that roughly 15% (5% to 37% 95% CI) of infections tested positive
and were reported to the WDRS. Note that this number is considerably higher than the probability in
Figure 2’s second panel since it is relative to the total number of infections instead of actively infectious
individuals on a given day. This estimate implies that a positive test in the WDRS corresponds
to between 3 and 19 infections suffered by King County’s population over the course of the
epidemic to date.

Even with declining transmission, high susceptibility puts us in a dangerous position. This is illustrated
in Figure 4. Under the assumption that testing continues to operate at recent workday levels, we compare
estimated daily COVID-19 positives under 3 scenarios (inset): gradual increase of Re to levels seen in
mid-March (grey), gradual increase of Re to levels seen in late-March (red), and maintenance of current
Re levels associated with continued physical distancing. In the first two scenarios, daily case-counts
remain above or comparable to levels we observed before physical distancing policies were implemented
in early March. In particular, in the grey scenario associated with significant relaxation of physical
distancing polices, King County returns to exponential growth of COVID-19 infections by mid-May.
Meanwhile, by maintaining current levels of Re, it is possible to decrease daily cases to late-February
levels by early June.

7 Conclusions
Using WDRS case data through April 20, we infer that the effective reproductive number in King County
has remained stable below 1 from March 29 to April 15. This is positive news, indicating clearly that
King County is likely experiencing declining COVID-19 transmission.

New to this report, we use data on COVID-19 mortality to subsequently infer population prevalence and
cumulative incidence on April 20. We find that more than 95% of King County’s population is
still completely susceptible to COVID, stressing the need for continued physical distancing
and cautious relaxation of policies to allow for particular, low-risk activities. If relaxation
results in transmission levels observed in mid-March, high susceptibility in King County results in a
return to exponential growth in COVID-19 infections.

The model in this report does not describe specific policies or strategies that might allow for relaxed
physical distancing with limited increases in transmission. We are working to quantify trade-offs among
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strategies with different costs, feasibilities, risks, and benefits, but decision-making under large uncertainty
will be a persistent challenge during this pandemic. Information collected by future contact tracing efforts
will help clarify the risks associated with different aspects of physical distancing policy, but continued,
wide-spread distancing is necessary to bring daily COVID-19 positives to levels where contact tracing
efforts are sustainable.

Speaking briefly as members of the King County community: We are proud of the collective response
King County has had in the face of this pandemic. The evidence is clear that our efforts have accomplished
a great deal, making our community substantially safer and healthier.

A Fitting a transmission model to case and mortality data
We use the following SEIR model:

St = St−1 − βtSt−1 (It−1 + zt−1) εt

Et = βtSt−1 (It−1 + zt−1) εt + (1− 1/DE)Et−1

It = Et−1/DE + (1− 1/DI) It−1

Ct ∼ Binomial {It, pt}
pt = a01(t < tr) + a11(t ≥ tr) + aw1(weekend)

(1)

where St, It, and Et are the number of people who are susceptible, infected, and exposed at time t, ln(εt)
has a zero-mean normal distribution with variance σ2

t , and Ct are daily observed COVID-19 cases in King
County. The case detection rate, pt, is assumed to have step-wise structure in time enforced by indicator
functions 1, with independent values before and after tr = March 10 and a correction for relaxed testing
on weekends. We assume DE = 4 days for the latent period, DI = 8 days for the infectious period, and
zt is non-zero only on January 15, 2020. This model is similar to the model from our previous report, but
there are some key differences:

• In the past we assumed the transmission rate, βt, was log-linearly related to mobility-based covariates.
In this case, we assume that βt varies over time with structure inferred directly from positive and
negative testing data.

• We assume that the reporting rate, pt, is a step-function, with unknown, independent values before
and after March 10, 2020, corresponding to a significant increase in daily tests in King County. We
also add an additional correction for relaxed testing on weekends.

• Finally, we previously assumed zt, which models COVID-19 importations into King County, was
equal to 1 on both January 15 and on February 25. Now, we assume that it is non-zero only on
January 15, with unknown value inferred from observed mortality data.

The model is fit to observed COVID-19 testing and mortality data from the WDRS. This is done in
distinct steps (detailed mathematically in the following section):

1. RAINIER, our algorithm for estimating ln(βt) and therefore Re from epidemiological data (also
described in Appendix 1 of our previous report), is applied to smoothed total tests times the daily
fraction of observed tests that were positive (red in Figure 5’s top panel). This is in contrast to
our previous work, where the algorithm was applied directly to positive cases (dashed black in
Figure 5’s top panel). We made this change to better account for the ramp up of testing and
for weekly oscillations in total tests, shown in Figure 5’s second panel. Overall, we think this
approximate epi-curve is more reflective of epidemiological changes than positive cases taken at face
value; however, we also see that this process sometimes introduces spikes in the epi-curve during
weekend periods of relatively lower testing, suggesting that weekend tests may be restricted to a
population more likely to be positive. Note finally that we still assume that the epi-curve can be
scaled by an unknown constant to coarsely approximate the infectious population over time, and
we numerically integrate over that constant.

Given point estimates and uncertainty for ln(βt) over the analysis period from February 28 to April
20, we approximate σ2

t = Var[ln(εt)] as Var[ln(βt)]. This is a cautious assumption since uncertainty
in ln(βt) estimation is added to uncertainty in the transmission process.

Finally, this approach generates βt and σt estimates from February 28 to April 15. To fill in the
remaining time from January 15 to April 20, we backward and forward fill. Backward-filling is done
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Figure 5: Accounting for changes in testing volume. Bottom panel: Fraction of tests that are positive
in the WDRS has been relatively stable since late February. Middle panel: Daily tests in King County
(black dashed line) have clear weekend drops that can be smoothed (red) by a 3-day smoothing spline.
Top panel: Daily positives (black dashed line) is fraction positive multiplied by total tests. In red is
fraction positive multiplied by smoothed total tests, a similar curve corrected for testing fluctuations that
we use for epidemiological inference.
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with the average estimate up to March 2, approximating unabated transmission before physical
distancing. Forward-filling is done using the estimate on April 15.

2. With βt and σt over the full time period, we find the value of zt on January 15 that best captures
the observed mortality data under the assumption that zt is zero on all other days. We make this
choice for identifiability reasons: With unknown numbers of importations at unknown times, it is
not possible to uniquely explain observed mortality. In the future, by incorporating other data
sources, we may be able to infer a more realistic set of importations into King County. As it is, our
approach gets us a model consistent with transmission dynamics today.

3. Finally, with zt and βt specified, we estimate the reporting rate over time, pt, by comparing positive
COVID-19 tests reported in WDRS to infections in the model, estimating the probability that
infections are caught by the health system each day. These noisy estimates are input into a standard
weighted least squares regression to estimate a0, a1, and aw.

B Additional mathematical details
The algorithm above can be described more formally in terms of probability. Doing so highlights the role
of assumptions we make and clarifies the effect of particular approximations.

Our goal is to calculate and maximize the posterior distribution

p(βt, pt, zt |Ct, C̃t,Mt),

where Mt is the observed mortality over time, C̃t is the approximate epi-curve constructed in Figure 5,
and the distribution is implicitly conditional on the relationships in equations 1. This is a complicated
distribution, difficult to evaluate as a whole and likely with multiple local maxima. To make progress and
motivate an optimization algorithm, we break the posterior into conditionally dependent pieces and make
strict conditional independence assumptions. More specifically, we approximate

p(βt, pt, zt |Ct, C̃t,Mt) ≈ p(βt | C̃t)

× p(zt |Mt, βt)

× p(pt |Ct, βt, zt),

(2)

an approximation that facilitates inference by establishing a hierarchy amongst model parameters and
connecting individual parameters to particular subsets of the full dataset. In the remainder of this section,
we focus on evaluating and maximizing each of the terms above individually, which corresponds to an
approximate posterior maximum since all the terms have value between 0 and 1.

The first term is evaluated by an algorithm we call RAINIER, which was described at a high level in
our previous report. Mathematically, we use the relationships in equations 1 to construct βt in terms
of Xt = (St, Et, It), the collection of hidden states. Then, to estimate Xt, we assume that It is directly
proportional to C̃t and Et is proportional to DEC̃t−DE

/DI both with unknown proportionality constant
1/r. This latter relationship is motivated by steady-state analysis of equations 1. We then have

p(βt | C̃t) =

∫ 1

0

dr

∫
dXt p(βt |Xt, r)p(Xt | C̃t, r)p(r | C̃t). (3)

The last term in the integrand, p(r | C̃t), can be shown to be uniform under the assumption that
C̃t ∼ Binomial{It, r} with the weakly informative prior r ∼ Beta(2, 1) enforcing that r is non-zero.
Meanwhile, we construct a Gaussian approximation to p(Xt | C̃t, r),

p(Xt|C̃t, r) = p(It, Et | C̃t, r)p(St |Et)

≈ N (It | Ît,ΣI)N (Et | Êt,ΣE)N (St | Ŝt,ΣS)

where means Êt and Ît and covariance matrices ΣE and ΣI are constructed using smoothing splines with
roughness penalties D4

E/8 and D4
I/8 respectively, enforcing priors on total-variation with expected value

equal to that of sine-waves with periods DE and DI . Then, rearranging equations 1 gives

St = S0 −
t−1∑
i=1

(Ei − (1− 1/DE)Ei−1)
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which can be used to calculate p(St |Et) through standard manipulations of multivariate Gaussians. To
move to the transmission rate, again rearranging equations 1, we have

lnβt + ln εt = ln {Et − (1− 1/DE)Et−1} − ln {It−1 + zt−1} − lnSt−1,

which can be used in a Laplace approximation to the integral over Xt in equation 3 under the assumption
that zt is known during the analysis period. In this report, as mentioned above, we have a strict prior on
zt setting it to zero on all days but January 15. Finally, with the Laplace approximation to p(βt | C̃t, r),
the integral over r is computed numerically on 50 uniformly spaced quadrature points between 0 and 1.

As described above, this approach is applied only to data from t0 = February 28 to t1 = April
20, where the spline approximation to Xt is guaranteed to remain positive since C̃t is far enough from
zero. Furthermore, in constructing the approximation to Et based on delaying data by DE , we are
limited to estimates up to April 15. To fill in the remaining time, we assume p(βt | C̃t) can be forward
and backward filled. Backward-filling is done with the average estimate up to March 2, approximating
unabated transmission before physical distancing. Forward-filling is done using the estimate on April 15.

Conditional on βt, the second term in equation 2 can be calculated using Bayes’ theorem,

p(zt |Mt, βt) ∝ p(Mt | zt, βt)
∏

i 6=1/15

δ(zi),

where the prior enforces the assumption that zt is nonzero only on January 15. This strict choice is
made out of necessity: With only mortality data from late February to today, timing and number of
importations are not jointly identifiable since fewer importations can always be assumed to have occurred
earlier leading to similar mortality closer to today.

Given βt and zt, the average mortality in the model can be calculated using the mean trajectory
associated with equations 1. Specifically, we calculate the average number of new exposures, scale by
the average 1% infection-fatality-ratio, and lag by the average time to death of 19 days. Estimation
of the one non-zero element of zt is carried out by assuming p(Mt | zt, βt) is a least-squares likelihood
and numerically minimizing the difference between the average model morality and Mt. While this
approach gets us a working point estimate for zt, uncertainty is poorly captured by the least-squares
approximation, and for now we use the point estimate only. In the future, we will explore the possibility
of more sophisticated inference of zt using other sources of data, but for the time being, zt should be
thought of as a modeled set of importations that yields the appropriate dynamics later on, not as an
inference of the actual COVID-19 introductions into King County.

Finally, to calculate p(pt |Ct, βt, zt), we sample the model for It trajectories. Mathematically,

p(pt |Ct, βt, zt) =

t1∏
i=t0

∫
dIi p(pi |Ci, Ii)p(Ii |βt, zt)

≈
t1∏

i=t0

1

N

N∑
j=1

Beta(Ci + 1, Ij,i − Ci + 1)

≈
t1∏

i=t0

N
(
pi

∣∣∣∣E [Ci + 1

Ii + 1

]
,Var

[
Ci + 1

Ii + 1

])
where in the second line we calculate p(pi |Ci, Ii) by exploiting conjugacy of Beta and Binomial distribu-
tions and the integrals over Ii are approximated using N = 10, 000 sample trajectories. The sum over
Beta distributions is taken by coarsely approximating them by their mean in the final line, where the
expectation and variance is over samples. This completely specifies the posterior distribution in equation
2 up to the approximations and assumptions we have made.

To fully specify the transmission model, sample means and variances of pt for each time step can
then be used in a weighted least squares regression to estimate parameters a0, a1, and aw. Then, with
the complete model, the distribution of Xt was sampled 10,000 times to estimate prevalence over time.
Distributions of cases and mortality can also be computed from these samples by additionally sampling
the binomial reporting model or the distributions of infection-fatality ratios and time-to-death specified
in the main text.
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Figure 6: Previous model-based projections of cases under 3 scenarios, shown in the inset. Gradual
increase in effective reproductive number (grey), maintenance (green), and gradual decrease (red) lead to
dramatic changes in projections of COVID-19 cases in King County (50% confidence intervals for each
scenario). This is a replication of Figure 3 from our previous report, with new data superimposed. Red
dots show new daily positives from the most recent WDRS update, and indicate that current data are on
the lower end of projections under all three scenarios.

C Comparing projections from the previous report to today
In our previous report, we used a transmission model to forecast 3 scenarios similar to those described above,
with increasing (grey), constant (green), and decreasing (red) transmission associated with corresponding
changes in physical distancing. Here, we use the updated data to evaluate those projections.

Updated data, the red dots in Figure 6, are on the low end of our projections under all three scenarios.
This illustrates why, in Figure 1, our updated model has more confidence that Re was definitively below
1 from March 29 to April 15. More generally, this comparison highlights the difficulty in definitive
forecasting: All three scenarios did equally well in predicting case data, and future transmission still
depends entirely on societal behavior.
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